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I. INTRODUCTlON 
The use of Multiresolution Analysis (MRA) concepts for the 

development of time-domain numerical schemes has been rc- 
cently studied in significant extent and a wide range of applica- 
tions has already been demonstrated [l]-[7]. A motivating force 
for this research activity is the fact that wavelet-based methods 
provide the most natural t?amework for the implementation of 
adaptive grids, dynamically following local variations and sin- 
gularities of solutions to partial differential equations.& partic- 
ular, it can be proven that the decay of wavelet expansion co- 
efficients of a square integrable function depends on the local 
smoothness of the latter [6]. Hence, significant wavelet values 
arc expected at space-time regions, where high variations in the 
numerical solution evolve. In this sense, sparing the arithmetic 
operations on wavelet coefficients below a certain threshold - 
small enough according to accuracy requirements- amounts to 
imposing c~arsc gridding conditions at those regions, while al- 
lowing for a denser mesh at parts of the domain where the solu- 
tion varies less smoothly. 

Several approaches to wavelet based mesh refinement have 
been presented in the literature. In [4], [5], Haar wavelets were 
used to selectively retie the resolution of an underlying FDTD 
scheme at parts of the domain where this seemed to be a priori 
necessary, in a static sense. However, the resulting method was 
strictly equivalent to a subgridded FDTD and presented obvi- 
ous accuracy disadvantages, since it was not enhanced by the 
intetpolatory operations that subgridded FDTD typically em- 
ploys [8]. In general, the necessity ten incorporate wavelets into a 
time-domain simulation technique is always related to dynamic 
rather than static subgriddiig, since the latter -having been ex- 
tensively studied in the literature- can be nowadays efficiently 
implemented by several existing engines. 

On the contrary, adaptive, wavelet-based meshing was intro- 
duced in [6] and applied to electromagnetic structures in [2], [7], 
always in conjunction with high order basis functions, these be- 
ing either Daubechies 01 B-splines. In both cases, the complex- 
ity of the proposed scheme made clear that “the constmction of 

wavelet-based discretizations with a robustness and flexibility 
comparable to FDTD is still a challenging task” [7]. This paper 
meets thiszhallenge by building up a two-level scheme on the E.! 
simplest wavelet basis, the Haar basis and attempting a simple =; - 
and explicit implementation of an algorithm for the threshold- 
ing of wavelet coefficients that is based on ideas originally rc- 
lated to shock-wave problems of computational fluid dynamics. 
Execution time measurcmcnts for the algorithm as applied to a 
nonlinear optics problem, show that this procedure can actually 
lead to faster-than-FDTD simulations. 

II. ADAPTIVE HAAR WAVELET SMJLATION OF PULSE 
COMPRESSION IN AN OPTICAL FIBER FILTER 

As a vehicle for the demonstration of the algorithms devel- 
oped in this study, tbe pmpagatiDn of an optical pulse through a 
fiber tilter and its gradual compression is simulated. This non- 
linear phenomenon is based on a self-phase modulation @PM) 
induced negative dispersion that the pulse experiences along 
the fiber and was originally reported and studied in [IO]. It is 
noted that the refractive index in the fiber assumes the form : 
n(z) = no + nl co@&) + nalE12, where the cosinusoidal 
tam is due to a periodic structure (grating) written within the 
core of the fiber. Numerical modeling of this cast was also 
pursued in [I I], by means of the Battle-Lemarie cubic splint 
based S-MRTD technique, resulting in execution time that was 
reported to be larger than FDTD by a factor of 1 S. In this work, 
a one wavelet level Haar MRTD scheme is used, for the pur- 
pose of estimating the improvement in computational perfor- 
mance that exclusively originates from the dynamic adaptivity 
of MRTD rather than the high order of an underlying scaling 
basis. 
A. Formulation of Haar MRTD scheme 

The electric field in the fiber is decomposed in forward and 
backward propagating waves as : 

E(t, t) = E&&t) 2(flz-wt) + E&t, t) e-+(P**t). (1) 
Substituting this expression into Maxwell’s equations and dis- 
carding terms with spatial variation faster than eJzPz, the fol- 
lowing system of equations is deduced : 

with 7 = ~mnz/X, n = ~ml/X and Ap(w) = m,(w)w/:~ 
27rn0/,!,, and ,!,J tbe free-space wavelength that satisfies the 
Bragg condition for the grating. 
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While the FDTD update equations for the system of(Z), (3) 
can be retrieved from [ 111, Haar MRTD equations arc derived 
here, by tirst expanding both forward and backward fields in 
tcmxofHaarscaling&.(z) = +/AZ-~), wavcl~t&,,(z) = 
$(z/A.z - m) functions in space and pulse functions h&(t) = 
h(t/At - k) in time, following the definitions of [I21 for those: 

where z = F, B. Upon substitution of (4) into (2), (3) and 
application of the Method of Moments as explained in [ 11, the 
system of Haa MRTD update equations is formulated. As m 
cxan~plc, the update equation for the m-th cell value of EFr+ at 
the k-th time step reads : 

with Sa(w) = sin W/Y, G’(u) = sin’ w/w and s = cAt/Az, 
being the FDTD CFL (Courant -Fricdrichs-Lcwy) number. Fur- 
thcmmrc, 

Similar equations hold for the rest of the unknowns, namely 
tEs*, rEz#, rE,f?. It is worth mentioning that operations 
in (5) GUI be readily split in scaling- and wavelet-related ones, 
thus facilitating their adaptive application. 

B. Boundary Conditions 
Assuming a” optical fiber that extends from z = 0 to L = L, 

the following boundary conditions arc imposed : 

E&O, t) = 
d- 

: (1 + j) f~-~“/(‘~‘)~ E&L, t) = 0 (7) 

by local modification of the update cq”ations, based on the cx- 
elicit enforcement ofthosc conditions (without cxtrapolation~ or 
interpolations as proposed in the past [3]). For example, if z = 0 
belongs to the M-tb cell ofthc domain, and gk = E&O, kAt) 
is the discrete-time sample ofthe excitation fuction at the k-th 
step, then : 

wt+,@ = 0.5 (a+1 + &+I), k+&’ = 0.5 (ia+1 - L+I) 

where XL = kEnFjd - 
(8) 

~Ez’l is explicitly updated via the cqua- 
tion : 

TABLE I 
VAIJDAT~ON DATA FOR NON-ADAPTIVE MRTD CODE 

Similar expressions arc derived for the application of the hard 
boundary condition on the backward wave at the terminal cell 
of the MRTD domain. 

Finally, absorbing boundary conditions for backward and for- 
ward waves are imposed at .z = 0, L, via matched layer ab- 
sorbers. The absorbers arc implemented as in [ 111, by cxpand- 
ing their quadratically varying conductivitics in Haar scaling 
functions. A maximum conductivity a,,, = 0.1 S/m is used 
in all subsequent simulations. 

C. Wlidzion 
For validation purposes, results of a non-adaptive HZU 

MRTD code arc compared to FDTD. The parameters ofthc fiber 
arc nomulized, with respect to the length L of the filter, as fol- 
lows : nL = 4, APL = 12, yL = 213. The time step is 
At = O.O03125n”L/(lOc) and hvo cases for the FDTD cell site 
arc considered : AZ = O.OOlL and At = 0.002L. Respectively, 
scaling cell sizes for MRTD arc chosen t” he AZ = 0.002L and 
AZ = 0.004L. as the introduction of one wavelet level r&es 
the resolution by a factor of two, thus allowing for the reduc- 
tion of the number of cells in half. Matched layers of 500 and 
250 cells terminate the FDTD and MRTD meshes respectively, 
with maximum conductivity o” = 0.1 S/m. Simulation data for 
both aforementioned cases arc provided in Table I. Execution 
times for the relevant FDTD and MRTD cases over 12,000 time 
steps (on a Sun Ultra 80 workstation at 500 MHz) reveal that 
the non-adaptive MRTD code is slower than FDTD by a factor 
of 11 _ 16 %. The reason for this expected slowdown is that 
the factor of increase in operations per cell between MRTD and 
FDTD is greater than the ratio of FDTD to MRTD cells (equal to 
two). The two methods agree well on the peak of the tnnsmit- 
ted intensity (which corresponds to the forward wave intensity 
at the end of the fiber). The slight difference can be atibutcd 
to the fact that in the MRTD absorber, the conductivity was as- 
sumed constant within each scaling cell and therefore it varied 
less smoothly than the corresponding FDTD absorber conduc- 
tivity. Morcovcr, Fig. 1 depicts the pulse compression along 
the fiber, since it includes pulse wavcfomw (extracted via 1000 
cell FDTD and 500 cell MRTD), as pmbcd at the beginning, the 
middle and the end of the fiber filter. Again, excellent correla- 
tion between the hv” methods (FDTD and MRTD) is demon- 
shxtcd. In consequence, the non-adaptive MRTD results can be 
henceforth used as a measure for accuracy estimation of adap- 
tive MRTD algorithms. 

Finally, Figs. 2, 3 show snapshots of the forward field in- 
tensity and the magnitude squared of the forward field wavclct 
coefficients plotted in space-time coordinates. Evidently, the 
evolution of both the wavelet coefficients and the field itself 
takes place along the characteristic line of forward field prop 
agation, I = ct. A similar pattern for wavelet behavior was “b- 
tained in [7], where non-uniform multiconductor transmission 
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line equations were solved via a biorthogonal wavelet basis. In 
the following, this observation is utilized for the development of 
a computationally efficient approach to the problem of tbresh- 
olding of wavelet coefficients. 

D. Implemenfafion and Perfirmance ofAdaptive MRTD 
Regarding the development of adaptive algorithms, two ques- 

tions are addressed in this work: First, the application of thresh- 
olding with as few operations (namely checks on wavelet coef- 
ficients being absolutely above or below a threshold e) as possi- 
ble and second, the stable exploitation of the compressed repre- 
sentation of the solution for the reduction in update operations 
at each time step. For this purpose, the following method is 
adopted [2], [6], [7], for both forward and backward pmpagat- 
ing wave arrays: 

. All cells are initialized as being above threshold (referred 
to as active). 

l Scaling coefficients are updated throughout the mesh, along 
with active wavelet terms. In all operations, only scaling 
and active wavelet terms are taken into account. 

. At each time step, the magnitudes of wavelet terms at cells 
that are designated as active are compared to an absolute 
threshold e. The corresponding cells remain active only if 
their wavelets are above the threshold. 

. The region of the active cells is extended to all nearest 
neighbors ofthe latter. Since only one wavelet level is used 
here, this implies cells that are immediately to the let? or to 
the tight of cells cm the border of active regions. 

Hence, tbresholding checks and update operations are limited to 
a subset of the field coefficients. Note that the use of the Haar 
basis and a single wavelet level scheme, keeps the implementa- 
tion of this adaptive algorithm relatively simple and readily ex- 
pandable to three dimensions. On the other hand, the complex- 
ity of numerical solvers based on higher order basis functions 
and multiple wavelet levels has regularly undermined the po- 
tential of adaptivity to yield execution times better than FDTD. 
Furthermore, the frequency of thresholding checks is implicitly 
dependent on the CFL numbers of the simulation, which effec- 
tively determines the maximum number of cells that a front may 
mwe through in a single time step. Approximately, a threshold- 
ing check window should be at must equal to l/s, with the pre- 
viously described procedure strictly corresponding to the value 
of 8 = 1. Physically, the thresholding algorithm, that was first 
introduced for the numerical solution af shock wave problems 

in [6], assumes the evolution of wavelet coefficients along wave- 
fronts detined from the characteristics ofa given problem. Then, 
the purpose of adding pivot elements, to extend the domain of 
active coeilicients, is actually the tracking of these wavefronts 
as they muve throughout the computational domain. 

To this end, the second case that was presented in section II-C 
is repeated here by using several absolute thresholds and CPU 
time measurements are carried wt. Also, three thresholding 
windows are investigated, with the outlined algorithm being ap- 
plied every one, two and four time steps respectively. Although 
the latter was slightly larger than l/s, it produced satisfactory 
(accuracy-wise) results. In all cases, thresholds up to 0.001 led 
to simulations that clearly resolved the pulse compression and 
suffered from ermrs (with respect to the unthresholded MRTD, 
which is used as a reference solution) of less than 1%. 

Fig. 4 depicts foward field intensity waveforms sampled at 
t = L, for thresholds 0.1, lo-’ and 10-l. The last two are in 
good agreement both with each other and with the previously 
presented FDTD and MRTD results, while the tirst suffers from 
significant numerical crm~s, that demonstrate themselves as a 
ripple corrupting the pattern of the waveform. More explicitly, 
CPU economy with respect to FDTD and error in the peak trans- 
mitted forward field intensity are plotted (with respect to the 
absolute threshold c), in Figs. 5, 6. It is thus shown, that the 
adaptive MRTD code can extract the solution to this problem, at 
a CPU time reduced (compared tu FDTD) by a factor close to 
30%, with errors limited at the order of 0.1%. 

Tbresholding operations in this problem represented a worst- 
case scenario for the computational overhead that the adaptive 
algorithm may bring about, for the following reasons : First, the 
geometry was a one-dimensional one, a significant part ofwhich 
was almost throughout the simulation occupied by the pmpagat- 
ing pulse and second, these operations involved complex num- 
bers and nonlinear tans. Therefore, the fact that an accelerated 
performance of adaptive MRTD (with respect to FDTD) was 
achieved is important and demonstrates the potential of the al- 
gorith”l for larger geometries. 

III. CONCLUSIONS 
Based on the study of a nonlinear pulse compression by an 

optical fiber filter, this paper demonstrated Haar wavelet based 
simulations with adaptive meshing that achieved better-than- 
FDTD execution times. To the extent of the authors’ knowl- 
edge this is the tirst time when an adaptive, wavelet-based code 
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Fig. 6. Rdedve error [X] in Be pc* intensity of the transmitted forward field 
for adaptive Haar MRTD. 

terms of memory but also in terms of execution &ne req&- 
meats. The satisfactory performance of the proposed technique 
stems from its relative simplicity that allows for an efficient im- 
plentation of its two components : tbresholding tests of wavelet 
coefficients and operation savings while performing updates of 
field arrays. 
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Fig. 5. CPU time eco”only for the adaptive MRTD cede, with respst to FDTD, 
for *solute tllreShOlds timn 10-1 L 0.1 applied !a Haar MRTD. 
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