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Abstract— The main atiractive feature of wavelet-based, time-domain
techniques is the simple impl tation of adaptive meshing, through the
application of a thresholding procedure to eliminate wavelet coefficients
that attain relatively insignificant values, at a Hmited compromise of ae-
curacy. However, little attention has been devoted so far to the investi-
gation of computational costs and accuracy trade-offs in order to obtain
thresholding-related operation savings. This paper presents an efficlent im-
plementation of thresholding applied to a non-livear problem and reports
significant execution time savings compared to the conventional! FDTD tech-
nique, that the application of the proposed method has led to.
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I. INTRODUCTION

The use of Multiresolution Anatysis (MRA) concepts for the
development of time-domain numerical schemes has been re-
cently studied in significant extent and a wide range of applica-
tions has already been demonstrated [1]-[7]. A motivating force
for this research activity is the fact that wavelet-based methods
provide the most natural framework for the implementation of
adaptive grids, dynamically following local variations and sin-
gularities of solutions to partial differential equations.-In partic-
ular, it can be proven that the decay of wavelet expansion co-
efficients of a square integrable function depends on the local
smoothness of the latter [6]. Hence, significant wavelet values
are expected at space-time regions, where high variations in the
numerical solution evolve, In this sense, sparing the arithmetic
operations on wavelet coefficients below a certain threshold -
small enough according to accuracy requirements- amounts to
imposing coarse gridding conditions at those regions, while al-
lowing for a denser mesh at parts of the domain where the solu-
tion varies less smoothly.

Several approaches to wavelet based mesh refinement have
been presented in the literature. In [4], [5], Haar wavelets were
used to selectively refine the resolution of an underlying FDTD
scheme at parts of the domain where this seemed to be a priori
necessary, in a static sense. However, the resulting method was
strictly equivalent to a subgridded FDTD and presented obvi-
ous accuracy disadvantages, since it was not enhanced by the
interpolatory operations that subgridded FDTD typically em-
ploys [8]. In general, the necessity to incorporate wavelets into a
time-domain simmulation technique is always related to dynamic
rather than static subgridding, since the latter -having been ex-
tensively studied in the literature- can be nowadays efficiently
implemented by several existing engines.

On the contrary, adaptive, wavelet-based meshing was intro-
duced in [6] and applied to electromagnetic structures in [2], [7],
always in conjunction with high order basis functions, these be-
ing either Daubechies or B-splines. In both cases, the complex-
ity of the proposed scheme made clear that “the construction of

wavelet-based discretizations with 2 robustness and flexibility
comparable to FDTD is still a challenging task™ [7]. This paper
meets this'challenge by building up a two-level scheme on the
simplest wavelet basis, the Haar basis and attempting a simple
and explicit implementation of an algorithm for the threshold-
ing of wavelet coefficients that is based on ideas originally re-
lated to shock-wave problems of computational fluid dynamics.
Execution time measurements for the algorithm as applied to a
nonlinear optics problem, show that this procedure can actually
lead to faster-than-FDTD simulations.

II. ADAPTIVE HAAR WAVELET SIMULATION OF PULSE
COMPRESSION IN AN OPTICAL FIBER FILTER

As a vehicle for the demonstration of the algorithms devel-
oped in this study, the propagation of an optical pulse through a
fiber filter and its gradual compression is simulated. This non-
linear phenomenon is based on a self-phase modulation (SPM)
induced negative dispersion that the pulse experiences along
the fiber and was originally reported and studied in [10]. It is
noted that the refractive index in the fiber assumes the form :
n(z) = ng + ny cos(20p2) + re|E|?, where the cosinuscidal
term is due to a periodic structure (grating) written within the
core of the fiber. Numerical modeling of this case was also
pursued in [11), by means of the Battle-Lemarie cubic splinc
based $-MRTD technique, resulting in execution time that was
reported to be larger than FDTD by a factor of 1.5. In this work,
a one wavelet level Haar MRTD scheme is used, for the pur-
pose of estimating the improvement in computational perfor-
mance that exclusively originates from the dynamic adaptivity
of MRTD rather than the high order of an underlying scaling
basis.
A. Formulation of Haar MRTD scheme

The electric field in the fiber is decomposed in forward and

backward propagating waves as :
E(z,8) = Ep(z,t) 959 4 Ep(z,1) e~ /P78 (1)
Substituting this expression into Maxwell’s equations and dis-

carding terms with spatial variation faster than ¢72%*, the fol-
lowing system of equations is deduced :
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with v = mna/A, & = wn /X and AB(w) = ne{w)w/c —
2rngf/ Ao and Ay the free-space wavelength that satisfies the
Bragg condition for the grating.
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While the FDTD update equations for the system of (2), (3)
can be retrieved from [11], Haar MRTD equations are derived
here, by first expanding both forward and backward fields in
terms of Haar scaling ¢m (z) = ¢(z/Az—m), wavelet g, (z) =
¥(z/ Az — m) functions in space and pulse functions hy(f) =
h(t/ At ~ k) in time, following the definitions of [12] for those:

o0
Eo(t, )= 3 (xEL® dm(2) + 1EZY (@) halt) &)
mk=—00

where ¢ = F,B. Upon substitution of (4) into (2), (3) and
application of the Method of Moments as explained in [1], the
system of Haar MRTD update equations is formulated. As an
example, the update equation for the m-th cell value of B at
the k-th time step reads :
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with Sa(w) = sin w/w, Sa’(w) = sin® w/wand s = cAt/Az,
being the FDTD CFL (Courant -Friedrichs-Lewy) number. Fuz-
thermore,

thn =|kEESP + | BEYP +2(|sB2O +| EV)

W = U2(BR+ BEVP - [\EGS - hEEM)
+ [RBES+ BBV - 4B - (ERVP
(6)

Similar equations hold for the rest of the unknowns, namely
«EDY, \EB9, EE¥_ Itis worth mentioning that operations
in (5) can be readily split in scaling- and wavelet-related ones,
thus facilitating their adaptive application.
B. Boundary Conditions

Assuming an optical fiber that extends from 2 = 0to 2 = L,
the following boundary conditions are imposed :

Ep(0,t) = \/g (1+j) e /@) Ep(Lty=0 (7)

by local modification of the update equations, based on the ex-
plicit enforcement of those conditions (without extrapolations or
interpolations as proposed in the past [3]). For example, if z = 0
belongs to the M —th cell of the domain, and g = Ep(0, kAt)
is the discrete-time sample of the excitation function at the k-th
step, then :

1 B5P = 0.5 (ges + Mei1) k1 Epg? = 0.5 (rpa — ’\H(—ég
where A = kEf;" - ,,Eﬁ’"” is explicitly updated via the equa-
tion :

Apr = Ap-1
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TABLE1
VALIDATION DATA FOR NON-ADAPTIVE MRTD CODE
Parametey FDTD, T MRTD, 1 FDTD,I1 | MRTD, Il
cells 1000 500 500 250
CPU time [sec] 43,25 48.23 25.55 29.56
maz|Ep(z = L) || 10.6042 | 10.6635 || 10.3541 | 10.4283

Similar expressions are derived for the application of the hard
boundary condition on the backward wave at the terminal cell
of the MRTD domain.

Finally, absorbing boundary conditions for backward and for-
ward waves are imposed at z = (, L, via matched layer ab-
sorbers. The absorbers are implemented as in [11], by expand-
ing their quadratically varying conductivities in Haar scaling
functions. A maximum conductivity 0y, = 0.1 S/t is used
in all subsequent simulations.

C. Validation

For validation purposes, results of a non-adaptive Haar
MRTD code are compared to FDTD. The parameters of the fiber
are normalized, with respect to the length L of the filter, as fol-
lows : kL = 4, ABL = 12, 4L = 2/3. The time step is
At = 0.003125n0L/(10¢) and two cases for the FDTD cell size
are considered : Az = 0.001L and Az = 0.002L.. Respectively,
scaling cel] sizes for MRTD are chosen to be Az = 0.002L and
Az = 0.004L, as the introduction of one wavelet level refines
the resolution by a factor of two, thus allowing for the reduc-
tion of the number of cells in half. Matched layers of 500 and
250 cells terminate the FDTD and MRTD meshes respectively,
with maximum conductivity og = 0.1 8/m. Simulation data for
both aforementioned cases are provided in Table I. Execution
times for the relevant FDTD and MRTD cases over 12,000 time
steps (on a Sun Ultra 80 workstation at 500 MHz) reveal that
the non-adaptive MRTD code is slower than FDTD by a factor
of 11 - 16 %. The reason for this expected slowdown is that
the factor of increase in operations per cell between MRTD and
FDTD is greater than the ratio of FDTD to MRTD cells (equal to
two). The two methods agree well on the peak of the transmit-
ted intensity (which corresponds to the forward wave intensity
at the end of the fiber). The slight difference can be atiributed
to the fact that in the MRTD absorber, the conductivity was as-
sumed censtant within each scaling cell and therefore it varied
less smoothly than the comresponding FDTD absorber conduc-
tivity. Moreover, Fig. 1 depicts the pulse compression along
the fiber, since it includes pulse waveforms (extracted via 1000
cell FDTD and 500 cell MRTD), as probed at the beginning, the
middle and the end of the fiber filter. Again, excellent correla-
tion between the two methods (FDTD and MRTD) is demon-
strated. In consequence, the non-adaptive MRTD results can be
henceforth used as a measure for accuracy cstimation of adap-
tive MRTD algorithms.

Finaily, Figs. 2, 3 show snapshots of the forward field in-
tensity and the magnitude squared of the forward field wavelet
coefficients plotted in space-time coordinates. Evidently, the
evolution of both the wavelet coefficients and the field itself
takes place along the characteristic line of forward field prop-
agation, 2 = ¢t. A similar pattern for wavelet behavior was ob-
tained in [7], where non-uniform multiconductor transmission
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Fig. 1. MRTD and FDTD results for the forward field intensity at the beginning,
the middle and the end of the optical fiber filter (1000 grid points).

line equations were solved via a biorthogona! wavelet basis. In
the following, this observation is utilized for the development of
a computationally efficient approach to the problem of thresh-
olding of wavelet coefficients.

D. Implementation and Performance of Adaptive MRTD

Regarding the development of adaptive algorithms, two ques-

tions are addressed in this work: First, the application of thresh-
olding with as few operations (namely checks on wavelet coef-
ficients being absolutely above or below a threshold ) as possi-
ble and second, the stable exploitation of the compressed repre-
sentation of the solution for the reduction in update operations
at each time step. For this purpose, the following method is
adopted [2], [6], [7], for both forward and backward propagat-
ing wave arrays: .

» All cells are initialized as being above threshold (referred
o as active).

» Scaling coefficients are updated throughout the mesh, along
with active wavelet terms. In all operations, only scaling
and active wavelet terms are taken into account.

» At each time step, the magnitudes of wavelet terms at cells
that are designated as active are compared to an absolute
threshold €. The corresponding cells remain active only if
their wavelets are above the threshold.

» The region of the active cells is extended to all nearest
neighbors of the latter. Since only one wavelet level is used
here, this implies cells that are immediately to the left or to
the right of cells on the border of active regions.

Hence, thresholding checks and update operations are limited to
a subset of the field coefficients. Note that the use of the Haar
basis and a single wavelet level scheme, keeps the implementa-
tion of this adaptive algorithm relatively simple and readily ex-
pandable to three dimensions, On the other hand, the complex-
ity of numerical solvers based on higher order basis functions
and multiple wavelet levels has regularly undermined the po-
tentiat of adaptivity to yield execution times better than FDTD.
Furthermore, the frequency of thresholding checks is implicitly
dependent on the CFL number s of the simulation, which effec-
tively determines the maximum number of cells that a front may
move through in a single time step. Approximately, a threshold-
ing check window should be at most equal to 1/s, with the pre-
viously described procedure strictly corresponding to the value
of 3 = 1. Physically, the thresholding algorithm, that was first
introduced for the numerical solution of shock wave problems
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Fig. 2. Spatio-temporal propagation and compression of the nonlinear optical
pulse {forward field intensity is shown).

in [6], assumes the evolution of wavelet coefficients along wave-
fronts defined from the characteristics of a given problem. Then,
the purpose of adding pivot elements, to extend the domain of
active coefficients, is actually the tracking of these wavefronts
as they move throughout the computational domain.

- To this end, the second case that was presented in section II-C
is repeated here by using several absolute thresholds and CPU
time measurements are carried out. Also, three thresholding
windows are investigated, with the outlined algorithm being ap-
plied every one, two and four time steps respectively. Although
the latter was slightly larger than 1/s, it produced satisfactory
(accuracy-wise) results. In all cases, thresholds up to 0.001 led
to simulations that clearly resolved the pulse compression and
suffered from errors (with respect to the unthresholded MRTD,
which is used as a reference solution) of less than 1%.

Fig. 4 depicts forward field intensity waveforms sampled at
z = L, for thresholds 0.1, 10~* and 10~7. The last two are in
good agreement both with each other and with the previously
presented FDTD and MRTD results, while the first suffers from
significant humerical errors, that demonstrate themselves as a
ripple corrupting the pattern of the waveform. More explicitly,
CPU economy with respect to FDTD and error in the peak trans-
mitted forward field intensity are plotted (with respect to the
absolute threshold €), in Figs. §, 6. It is thus shown, that the
adaptive MRTD code can extract the solution to this problem, at
a CPU time reduced (compared to FDTD) by a factor close to
30%, with errors limited at the order of 0.1%.

Thresholding operations in this problem represented a worst-
case scenario for the computational overhead that the adaptive
algorithm may bring about, for the following reasons : First, the
geometry was a one-dimensional one, a significant part of which
was almost throughout the simulation occupied by the propagat-
ing pulse and second, these operations involved complex num-
bers and nonlinear terms. Therefore, the fact that an accelerated
performance of adaptive MRTD (with respect to FDTD) was
achieved is important and demonstrates the potential of the al-
gorithm for larger geometries.

IIl. CONCLUSIONS
Based on the study of a nonlinear pulse compression by an
optical fiber filter, this paper demonstrated Haar wavelet based
simulations with adaptive meshing that achieved better-than-
FDTD execution times, To the extent of the authors’ knowl-
edge this is the first time when an adaptive, wavelet-based code
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Fig. 3. Spatio-temporal evolution of forward field wavelet coefficients (square
of magnitude of wavelet coefficients is shown).

Fig. 6. Relative error {%] in the peak intensity of the transmitted forward field
for adaptive Haar MRTD.

surpasses the efficiency of the conventional FDTD, not only in
terms of memory but also in terms of execution time require-
ments. The satisfactory performance of the proposed technique
stems from its relative simplicity that allows for an efficient im-
plentation of its two components : thresholding tests of wavelet
coefficients and operation savings while performing updates of
field arrays.
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Fig. 4. Teasmitted forward field intensity for different thresholds, with thresh-
olding applied every four time steps,
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Fig. 5. CPU time economy for the adaptive MRTD code, with respect to FDTD,
for absolute thresholds from 10~7 to 0.1 applied to Haar MRTD.
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